Subject programme

- 1. Subject name / subject module: Control Engineering
- 2. Lecture language: English
- 3. The location of the subject in study plans:
 - Area or areas of the studies: Computer Engineering and Mechatronics
 - Degree of the studies: 1st degree studies
 - Field or fields (implementation of effects standard): Mechatronics
- **4.** Supervision of subject implementation:
 - The Institute / Another unit: Institute of Informatics and Mechatronics
 - The person responsible for the subject: Repka Michal, dr inż.
 - People cooperating in the development of the programme of the subject:
- 5. The number of hours and forms of teaching for individual study system and the evaluation method:

Teaching activities with the tutor																				
Mode of study		Form of classes														Total				
		sow	ECTS	Laboratory work	sow	ECTS		sow	ECTS		sow	ECTS		sow	ECTS	 sow	ECTS	 SOW	ECTS	ECTS
Full-time studies				38	50	2 5														2 5
Part-time studies						5,5														3,5
Credit rigor				Graded	assignr	nent														

6. Student workload – ECTS credits balance:

1 ECTS credit corresponds to 25-30 hours of student work needed to achieve the expected learning outcomes including the student's own work

Activity (please specify relevant work for the subject)	Hourly student workload (full-time studies/part-time studies)
Participation in lectures	-
Participation in laboratory classes	38
Preparation to laboratory classes	24
Independent study of the subject	12
Preparation to a final test	12
Participation in an exam / graded assignment	2
Total student workload (TSW)	88
ECTS credits	3,5
* Student's workload related to trainings	88
Student's workload in classes requiring direct participation of academic teachers	38

7. Implementation notes: recommended duration (semesters), recommended admission requirements, relations between the forms of classes:

- Recommended admission requirements none.
- Recommended duration of the subject is taken from the course plan.
- 8. Specific learning outcomes knowledge, skills and social competence:

	Specific learning outcomes for the subject		Tooching	Methods for testing of					
Outcome symbol	Outcome description	Form	method	(checking, assessing) learning outcomes					
	Knowledge								
K_W05	A student has basic knowledge of automation and electronics.		Inquin	Final test Student					
K 14/09	A student knows and understands selected specific issues in the field of	Laboratory work	methods	learning activities					
K_W08	automation and electronics.		methous						
Skills									
K 1108	A student is able to plan and carry out experiments, including basic								
K_008	measurements with dc engines and position control.	Laboratorywork	Inquiry	Final test, Student					
K_U14	A student is able to see and identify the problem about position and speed		methods	learning activities					
	control with or without feedback.								

Subject programme

9. Assessment rules / criteria for each form of education and individual grades:

0% - 50%	ndst	80% - 86%	db
51% - 70%	dst	87% - 93%	db+
71% - 79%	dst+	94% - 100%	bdb

Activity	Grades	Calculation	To Final	
Laboratory tasks	dst, db, bdb (3,4,5)	arithmetic mean (3,4,5,4) * 60%	2,4	
Attendance	on 70% of all classes	70% * 5 -> 3,5 * 10%	0,35	
Final test	bdb (5)	5 * 30%	1,5	
Final result			4,25	
Grade		4,25/5 = 85%	db (4.0)	

10. The learning contents with the form of the class activities on which they are carried out: *(Laboratory work)*

1. Introduction to assisted steering: The essence of assisted steering; Classification of assisted steering systems; Steering and management;

2. Dynamic systems models and methods of analysis: Traffic equation; operator and spectral transmission; State space;

3. Automation Components: Regulators and Controllers; Sensors and Measurement Transducers; Drives, Position Control, Servo Engines;

4. Automation design: Automatic system stability; Governor settings; Status feel; polarity reversals, state monitors;

5. Switching Systems: Combination Systems; SFC Graphs; PLC Drivers;

6. Industrial automation systems: Specificity of real-time systems; Real-time operating systems; Industrial networks - SCADA systems; Distributed automation systems.

11. Required teaching aids:

- a. Lecture multimedia projector.
- b. Laboratory classes specialist laboratory.

12. Literature:

- a. Basic literature:
 - 1. Golnaraghi F., Kuo Benjamin C.: Automatic control systems, John Wiley & Sons, New York 2010, ISBN: 978-0-470-04896-2
 - 2. Nise Norman S.: Control systems engineering, John Wiley & Sons, Hoboken 2008, ISBN: 978-0-471-79475-2
- **b.** Supplementary literature:
 - 1. D.H. Hanssen: Programmable Logic Controllers: A Practical Approach to IEC 61131-3 using CODESYS, Wiley, ISBN: 9781118949214
 - 2. www.industrialtext.com Introduction to PLC Programming and Implementation from Relay Logic to PLC Logic

Subject programme

- **13.** Available educational materials divided into forms of class activities (Author's compilation of didactic materials, e-learning materials, etc.)
- 14. Teachers implementing particular forms of education:

Form of education	Name and surname
1. Lecture	
2. Laboratory classes	Repka Michal, dr inż.
3. Training	
4. Project classes	
5. Workshop classes	
6. Simulation game	
7. Language classes	